HW Number ONE, DUE: Sunday Feb 29, 2012 at 2pm

Ayman Badawi

QUESTION 1. a) Construct the Caley's Table for the group $\left(D_{3}, o\right)$.
b) Find the order of each element in D_{3}
c) Is it true that $|a \circ b|=|a||b|$ for every $a, b \in D_{3}$? EXPLAIN
d) Let $F=\left\{a \in D_{5} \mid a\right.$ is a rotation $\}$. For each $b \in F$ find $|b|$.
e) Let $F=\left\{a \in D_{8} \mid a\right.$ is a rotation $\}$. For each $b \in F$ find $|b|$ (something is going on and it seems what you might concluded from (d) not always TRUE!!!)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW Number TWO, DUE: Sunday March 4, 2012 at 2pm

Ayman Badawi

QUESTION 1. Let $S=\{2,4,8,10,14,16\} \subset Z_{18}^{*}$. constructing the Caley table for $\left(S, X_{18}\right)$. After you do that it will be clear that that $\left(S, X_{18}\right)$ is a group. Now
a) Find the identity of S.
b) For each $b \in S$, find b^{-1}.
c) Is S cyclic? If yes write $S=<a>$ for some $a \in S$

QUESTION 2. Let S be a nonempty finite subset of a group $(G, *)$. Suppose that $(S, *)$ is closed. Prove that $(S, *)$ is a subgroup of $(G, *)$ [Hint: you only need to show that $e \in S$. Then by a result in the class, we are done].

QUESTION 3. Let $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 4\end{array}\right] \in M_{2}\left(Z_{7}\right)$. Find A^{-1}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW Number Three, DUE: Sunday March 18, 2012 at 2pm

Ayman Badawi

QUESTION 1. a) Let $(G, *)$ be a finite cyclic group with m elements $(m<\infty)$. Let d be a factor of m (i.e., $d \mid m$). Show that G has exactly one subgroup of order d.
b) Suppose that $(G, *)$ is an infinite cyclic group. Prove that G has exactly two generators.
c) Find $|10|,|13|,|103|,|25|$ in $\left(Z_{225},+\right)$.
d) Let G be a group and $a \in G$ such that $|a|=m<\infty$ and let $1 \leq k<m$. Prove that $\left|a^{k}\right|=\left|a^{m-k}\right|$.
e) Let $a, b \in(G, *)$ such that $|a|=m<\infty$. Prove that $|a|=\left|b * a * b^{-1}\right|=m$.
f) In $D_{3},\left|\operatorname{rot}_{120}\right|=3,|r e f|=2, \operatorname{gcd}(2,3)=1$ but $\left|\operatorname{rot}_{120} \quad 0 \quad r e f\right| \neq\left|\operatorname{rot}_{120}\right||r e f|$. Now let $(G, *)$ be a group, $a, b \in G$ such that $a * b=b * a,|a|=m,|b|=n$ and $\operatorname{gcd}(m, n)=1$. Prove that $|a * b|=|a||b|=m n$.
g) Let $S=\left\{\left.\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right] \right\rvert\, k \in Z_{18}\right\}$. Prove that (S, X) is a cyclic group with exactly 18 elements (here X means matrix multiplication). Find all generators of S.
h) Is $(U(10), \times)$ cyclic? if yes, find all generators of $U(10)$. Is $U(9)$ cyclic? find all generators of $U(9)$.
i) Let $n \geq 3$. Find $\left|2^{n-1}-1\right|,\left|2^{n-1}+1\right|$ in $\left(U\left(2^{n}\right), \times\right)$. Now prove that $\left(U\left(2^{n}\right), \times\right)$ is not cyclic. [hint : use (a) above].
$\mathrm{f}+$) Let G be a finite abelian group with 36 elements. Given $a, b \in G$ such that $|a|=9$ and $|b|=4$. Prove that G is cyclic

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW Number Four, DUE: Thursday March 29, 2012 at 2pm

Ayman Badawi

QUESTION 1. Let $G=(U(25), \times)$. Calculate:
a) $|2|$
b) $|16|$
c) $|7|$
d) Let H be a subgroup of G with exactly 4 elements. Calculate all distinct left cosets of H.

QUESTION 2. Construct an infinite non-abelian group G such that for each positive integer $n \geq 2, G$ has a cyclic finite subgroup of order n.

Here are the steps to construct such example:
a) Let $M_{2}(R)$ be the set of all 2×2 matrices with entries from R (real numbers). Let $G=\left\{A \in M_{2}(R) \mid\right.$ $\operatorname{det}(A)=1\}$. Show that G under normal matrix multiplication is a non-abelian group. (i.e, Show that G is closed, no need to show associative (it is always associative), show that G has identity, show that for each $A \in G, A^{-1}$ exist and $A^{-1} \in G$.). It should be clear that G is non-abelian. Just find two elements A, B in G and check that $A B \neq B A$.
b) Let $n \geq 2$. Let $F=\left[\begin{array}{cc}\cos (360 / n) & -\sin (360 / n) \\ \sin (360 / n) & \cos (360 / n)\end{array}\right]$. Show that $|F|=n$, and hence $<F>$ is a finite cyclic subgroup of G with exactly n elements. [Note that $\cos (a) \cos (b)-\sin (a) \sin (b)=\cos (a+b)$ and $\sin (a) \cos (b)+$ $\cos (a) \sin (b)=\sin (a+b)]$
c) In view of (b), let $D=\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]$. Find $|D|$.

QUESTION 3. Let H, D be finite groups and $M=H \bigoplus D$.
a) prove that $|(a, b)|=L C M(|a|,|b|)$ [NICE TO HAVE!!!]
b) Now let $M=U(8) \bigoplus Z_{3}$. Find $|(3,2)|$. Construct a subgroup of M with exactly 4 elements, say H. Then find all distinct left cosets of H.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW number 5, MTH 320: Abstract Algebra I, Spring 2012, Due: Sunday May $3^{r d}$ at 2pm

Ayman Badawi

QUESTION 1. Which of the following groups is (are) cyclic. If cyclic, then find a generator. If not cyclic, then briefly give me a reason.
(i) Let $G=Z_{4} \oplus U(27)$
(ii) Let $G=D_{3} \oplus Z_{7}$
(iii) Let $G=A_{3} \oplus Z_{8}$
(iv) Let $G=U(4) \oplus A_{3}$

QUESTION 2. 1) Show that A_{4} has exactly one subgroup of order 4. Construct such group and call it H. Show that H is a normal subgroup of A_{4} and Find the elements of A_{4} / H. IMPORTANT: (You should know that a group G is simple if the only proper normal subgroup of G is $\{e\}$. So the correct statement about $A_{n}: A_{3}$ is simple and A_{n} is simple for each $n>=5$. The only exception is A_{4}).

QUESTION 3. It is easy to see that $M=G L(2, Z)$ is a group and $H=S L(2, Z)$ is a normal subgroup of $M=$ $G L(2, Z)$. Find all elements of G / H and show that G / H is cyclic (and hence abelian).

QUESTION 4. It is easy to see that $(\mathbf{Z},+)$ is a normal subgroup of $(Q,+)$ and hence G / Z is a group. Show that G / Z is infinite such that each element in G / Z has a finite order. In particular, for each positive integer $n \geq 2$, show that G / Z has exactly $\phi(n)$ elements where each element has order n.

QUESTION 5. (EXTRA CREDIT $=5$ points) Show that S_{4} does not contain a normal subgroup of order 8

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

